Lebesgue Constants and Fourier Transform

نویسنده

  • E. R. LIFLYAND
چکیده

This is an attempt of a comprehensive survey of the results in which estimates of the norms of linear means of multiple Fourier series, the Lebesgue constants, are obtained by means of estimating the Fourier transform of a function generating such a method. Only few proofs are given in order to illustrate a general idea of techniques applied. Among the results are well known elsewhere as well as less known or published in an unacceptable journals and several new unpublished results. Preprint BIMACS–9501 Bar-Ilan University, 1995 1991 Mathematics Subject Classification. 42B08, 42B10, 42B15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lebesgue Constants of Multiple Fourier Series

This is an attempt of a comprehensive treatment of the results concerning estimates of the L-norms of linear means of multiple Fourier series, the Lebesgue constants. Most of them are obtained by estimating the Fourier transform of a function generating such a method. Frequently the properties of the support of this function affects distinctive features in behavior of these norms. By this geome...

متن کامل

Asymptotic Expansion for the Lebesgue Constants of the Walsh System

Let Lk denote the Lebesgue constants of the Walsh system. The following exact result is established by means of Mellin transforms: ∑ 1≤k<n Lk = n 4 log2 n+ nF (log2 n)− Ln 2 , for n ≥ 1, where F (u) is a continuous periodic function with period 1 whose Fourier coefficients can be explicitly expressed in terms of Riemann’s zeta function. This improves an old result of Fine.

متن کامل

Multilinear Fourier Multipliers with Minimal Sobolev Regularity

Letm be a positive integer. In this talk, we will introduce optimal conditions,expressed in terms of Sobolev spaces, on m-linear Fourier multiplier operatorsto be bounded from a product of Lebesgue or Hardy spaces to Lebesgue spaces.Our results are sharp and cover the bilinear case (m = 2) obtained by Miyachiand Tomita [1]. References[1] Miyachi A., and Tomita N., Minima...

متن کامل

A Pointwise Estimate for the Fourier Transform and Maxima of a Function

We show a pointwise estimate for the Fourier transform on the line involving the number of times the function changes monotonicity. The contrapositive of the theorem may be used to find a lower bound to the number of local maxima of a function. We also show two applications of the theorem. The first is the two weight problem for the Fourier transform, and the second is estimating the number of ...

متن کامل

Henstock–Kurzweil Fourier transforms

The Fourier transform is considered as a Henstock–Kurzweil integral. Sufficient conditions are given for the existence of the Fourier transform and necessary and sufficient conditions are given for it to be continuous. The Riemann–Lebesgue lemma fails: Henstock– Kurzweil Fourier transforms can have arbitrarily large point-wise growth. Convolution and inversion theorems are established. An appen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995